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| . Averaging



The basic averaging process

® N identical particles
® Fach particle carries a number Vi
® Particles interact in pairs

® Both particles acquire the average

V1 1+ U2 Ul+02>
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Conservation laws & dissipation

® TJotal number of particles is conserved

® Jotal momentum is conserved

N

E v; = constant
i=1

° ° ° ° 1
® Energy is dissipated in each encounter E; = 51;?
1
AE = Z(Ul — ’02)2

We expect the velocities to shrink



Some details

Dynamic treatment

Each particle collides once per unit time
Random interactions

The two colliding particles are chosen randomly

Infinite particle limit is implicitly assumed

N — o0

Process is galilean invariant = — z + xg

Set average velocity to zero (z) =0



The temperature

Definition
T = (v?)
Time evolution = exponential decay
dT T = T0€_>\t
= AT
dt A=

2
All energy is eventually dissipated

Trivial steady-state

P(v) — d(v)



The moments

Kinetic theory

8P (v,1) // dvidvy P(v1,t)P(ve,t) [5 (v _ 4 ;vz> —0(v — vl)]

Moments of the distribution
M,, = /dvv”P(v,t)

Closed nonlinear recursion equations

n—2
dM n
24N M, =2"" M, M, _.
dt Z (m)

Asymptotic decay

m=2

M, ~ et with )\, =1—2" (=1



Multiscaling

® Nonlinear spectrum of decay constants

A\, =1—2"(n=1)

® Spectrum is concave, saturates
A < Am + An—m

® Each moment has a distinct behavior

My,

> OO0 as t — o0
M M, ..,

Multiscaling Asymptotic Behavior



The Fourier transform

The Fourier transform F(k) = /dv " P (v, t)

Obeys closed, nonlinear, nonlocal equation

aFaik) - F(k) = F2(k/2)
Scaling behavior, scale set by second moment
_ A 1
F(k,t) — f (ke™*") )\:?2:1

Nonlinear differential equation

Xz f'(2) + f(2) = [?(2/2)
Solution

Fz) = (1+[2]e



The velocity distribution

® Self-similar form
P(v,t) — ep (ve)

® Obtained by inverse Fourier transform

( ) 2 1
P\W) =
(14 w?)’
® Power-law tail
p(w) ~w™*

|. Temperature is the characteristic velocity scale

2. Multiscaling is consequence of diverging
moments of the power-law similarity function



Stationary Solutions

® Stationary solutions do exist!
F(k) = F*(k/2)

® Family of exponential solutions
F(k) = exp(—kuvg)

® | orentz/Cauchy distribution

1 1
g 1 4+ (v/vg)?

P(v) =

How is a stationary solution
consistent with energy dissipation!?



Extreme Statistics

Large velocities, cascade process

(U U) (v, /02>_><v1 Vo V] + Vg
VUV — — . o

2" 2
Linear evolution equation
0P (v) v

o (2) - P)

Steady-state: power-law distribution

P(v) ~ v i

Divergent energy, divergent dissipation rate



Injection, Cascade, Dissipation

Experiment: Lottery MC:
rare, powerful award one particle

energy injections 1 1 all dissipated energy
In P(|v]) i 1 l

(Y4

In |v]

Injection selects the typical scale!



|. Conclusions

Moments exhibit multiscaling

Distribution function is self-similar
Power-law tail

Stationary solution with infinite energy exists
Driven steady-state

Energy cascade



|l. Restricted Averaging



The compromise process

Opinion measured by a continuum variable
— A<z <A

Compromise: reached by pairwise interactions
(21, T5) — T1+ T2 T1 1+ T2
b 2 2
Conviction: restricted interaction range

e o —~ o o

o o —> _8

|£El —.C172| <1

Minimal, one parameter model

Mimics competition between compromise and

conviction Weisbuch 2001



Problem set-up

Given uniform initial (un-normalized) distribution

1 |z < A
Po(x):{() rl > A

Find final distribution
Pyo(x) =7

Multitude of final steady-states

Dynamics selects one (determlnlstlcally)

Multiple localized clusters



Numerical methods, kinetic theory

® Same master equation, restricted integration

6P (2, 1) //d:z:ldsz x1,t)P(x2,1) {5( a _5562) —5(:13—x1}

’5131 5132| <1

Direct Monte Carlo simulation of stochastic process

® Numerical integration of rate equations

i
R A
P e A




Rise and fall of central party

0 < A <1.871 1.871 < A < 2.724

JL | I

Central party may or may not exist!




Resurrection of central party

2.724 < A < 4.079 4.079 < A < 4.956

|

Parties may or may not be equal in size



Bifurcations and Patterns
10 ¢ v v . ' ; r . .

major
central
5 | minor
X0
A A &
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Self-similar structure, universality

Periodic sequence of bifurcations_

|. Nucleation of minor cluster branch

2. Nucleation of major cluster brunch

X 0

3. Nucleation of central cluster
-5t

Alternating major-minor pattern_ |

0

Clusters are equally spaced

Period L gives major cluster mass, separation

2(A) = 2(A) + L é 2.155




How many political parties?
2

Israel =

0.15

Ukraine

frequency
o

0.05 ¢

0 5 10 15 20
number of parties
eData: CIA world factbook 2002

* |20 countries with multi-party parliaments
* Average=>5.8; Standard deviation=2.9



Cluster mass

® Masses are periodic
m(A) = m(A + L)

® Major mass L
0

M — L =2.155 w2 |
® Minor mass m 107

m — 3 x 1074

Why are the minor clusters so small? gaps!



Scaling near bifurcation points

® Minor mass vanishes 13_3
T ~~ (A — Ac)a 10—4
_5
e Universal exponent m 19
10
—7
)3 typel 10 i
14 type3 10_9

10

L-2 is the small parameter
explains small saturation mass



Heuristic derivation of exponent

. 1
* Perturbation theory A =1 +c¢

e Major cluster z(00) =0
* Minor cluster z(c0) = +(1+¢/2) _A J\ A

= I RS LI

® Rate of transfer from minor cluster to major cluster
dm _
T o M O —> moe~cee !

dt
® Process stops when

e 2 e

® Final mass of minor cluster

m(oo) ~ m(ts) ~ € a=3



Pattern selection

® |inear stability analysis

. 8 k2
o t(kx+wt) _ T dn 2 o
P—1xe —  w(k) . sin ksmk 2
® Fastest growing mode
dw 2T
— L =" =2251
o — 5 015
® Traveling wave (FKPP saddle point analysis)
dw  Im(w) 27
dk ~ Tm(k) k

Patterns induced by wave propagation from boundary
However, emerging period is different

2.0375 < L < 2.2515
Pattern selection is intrinsically nonlinear



ll. Conclusions

Clusters form via bifurcations
Periodic structure

Alternating major-minor pattern
Central party does not always exist
Power-law behavior near transitions

Nonlinear pattern selection



lll. Diffusive Averaging



Diffusive Forcing

Two independent competing processes

|. Averaging (nonlinear)

(11, 03) — V1 + UV U1 1 U2
1, U2 9 9 9

2. Random uncorrelated white noise (linear)
d?]j B (t)
it

® Add diffusion term to equation (Fourier space)
(1+ DE*)F(k) = F*(k/2)

System reaches a nontrivial steady-state
Energy injection balances dissipation



Infinite product solution

® Solution by iteration

1

1 1
F(k) =5 1+ Dk2

F2) = T h i paet W=

® |nfinite product solution

F(ky=1][1+D(k/2")?]"
1=0
® Exponential tail , —

2%'

1

P(v) o exp (—m/@) PO

k—i/vD

® Also follows from

0°P(v)
D 5.2 = —P(v)

Non-Maxwellian distribution/Overpopulated tails



Cumulant solution

Steady-state equation
F(k)(1+ Dk*) = F*(k/2)
Take the logarithm (k) = In F(k)
(k) +1n(1 4+ DEk?) = 29(k/2)
Cumulant solution ]
F(k) = exp | > v (—DK2)" /n
Generalized fluctuatig:-ldissipation relations

wn _ )\T—Ll _ [1 L 21—%} —1




Experiment

— theory

M —— Maxwellian

F - : 5 "I.l\

3 experiment A
gr IS © experiment B

“A shaken box of marbles”

Menon Ol
Aronson 05



lll. Conclusions

® Nonequilibrium steady-states

® Energy pumped and dissipated by different
mechanisms

® Overpopulation of high-energy tail with
respect to equilibrium distribution



IV. Orientational Averaging



Orientational Averaging

—_—
—_—

Each rod has an orientation il
0<f<nrm \i*

Alignment by pairwise interactions

01+602 0:140- 0, — 0
(01,02) — (939;2 2919 +2 LR
(AECeter aletim) 1) — Oy >
Diffusive wiggling
do ;
d_tj = 1; (1)

Kinetic theory

orP 0P [T ¢ ¢
- =D / d¢P(9—§>P(6’+§>—P.

— 7T




Fourier analysis

Fourier transform
Pk — <e—ik9> — / d@e_ZkQP(H) P(9) = % Z Pttt
Order parameter
R = (") = |P_4]

Probes state of system

P 0 disordered state WNAW,
1 perfectly ordered state MM

Closed equation for Fourier modes

Pk — E GZ,jPzP] G;; =0 when |[|i—j|=2n
i+j=k



Nonequilibrium phase transition

" o 4
Critical diffusion constant D.=— -1
Subcritical: ordered phase R >0
Supercritical: disordered phase R =0

Critical behavior R~ (D, — D)!/?
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Distribution of orientation

* Fourier modes decay exponentially with R

P, ~ RF

e Small number of modes sufficient
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Partition of Integers

* [terate the Fourier equation

Po= Y Gi;PPi= > Y Gi;jGmPPPy,=--
itj=k i+j=kl+m=j

e Series solution
R=r3R% +rsR® + - -

Partition rules r3 = G261
Eo= ity ‘3
Y | |
j # 0 S

G £ 0 ]



Experiments

“A shaken dish of toothpicks”



V. Conclusions

Nonequilibrium phase transition

Weak noise: ordered phase (nematic)

Strong noise: disordered phase

Solution relates to iterated partition of integers

Only when Fourier spectrum is discrete: exact
solution possible for arbitrary averaging rates



